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Abstract

We investigate the information processing of a linear mixture of independent sources of different magnitudes. In particular we consider the
case where a numbaer of the sources can be considered as “strong” as compared to the other ones, the “weak” sources. We find that it is
preferable to perform blind source separation in the space spanned by the strong sources, and that this can be easily done by first projecting
the signal onto thenlargest principal components. We illustrate the analytical results with numerical simulai&®@00 Elsevier Science
Ltd. All rights reserved.
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1. Introduction processing system about the signal, and to consider in
more detail the case where some of the sources are very
During the recent years many studies have been devotedveak compared to the others. We will show that in that
to the study of Blind Source Separation (BSS) and more case it is worthwhile to project the data onto the space
generally to that of Independent Component Analysis generated by the strong sources in order to extract mean-
(ICA) (see, e.g. Amari & Cardoso, 1997; Cardoso, 1989; ingful information and to avoid numerical problems. The
Comon, 1994; Herault, Jutten & Ans, 1985). Within the contributions to the (projected) signal from the weak
standard framework one assumes a multidimensional sources can then be considered as noise terms added to
measured signal to result from a linear mixture of statisti- the linear mixture of strong sources. Since the sources are
cally independent components, or “sources”. In most casesindependent, this “noise” is thus independent of the “pure”
one makes the optimistic hypotheses that the number ofsignal (the part due to the strong sources).
sources is equal to the dimension of the signal (the number The paper is organized as follows. In Section 2 we intro-
of captors), and that the unknown mixture matrix is inver- duce the model and give a precise definition to the strength
tible. The goal of BSS is then to compute an estimate of the of a source. In Section 3 we compute Shannon information
inverse of the mixture matrix in order to extract from the quantities from which we characterize how each source
signal the independent components. contributes to the information conveyed by the data and
In the present paper we study the effect of having sourcesby the output of the processing network. We then discuss
with different “strengths” when performing BSS. After the case of a linear mixture ®f independent sources with
giving a proper definition of the strength of a source, the N — m*“weak” sources andn “strong” sources. The results
main purpose of our study is to relate the strength of a sourceof Section 3 show that in such a case it would be preferable
to its contribution to the information conveyed by the to be able to work in then-dimensional space spanned by
the strong sources. We show in Section 4 that, with a good
approximation, this is simply done by projecting the data
* Corresponding author. Permanent address. G. Nadjakov Institute for onto them Iarg_est prlnc_lpal C(_)mponents. As aresult _On6 can
Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria. P€rform BSS in then-dimensional space where one is deal-
Tel.: +34-91-398-7126; fax:34-91-398-6697. ing with an m-dimensional linear mixture corrupted by a
, E-mail addresselka@fisfun.uned.es (E. Korutcheva). . weak input noise. In Section 5 we study, at first nontrivial
Present address. NASA/Goddard Institute for Space Studies, 2880 order in the noise strength, the expected performance in the
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estimation of them strong sources. Eventually in Section 6
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2. The model be done with any one of the known BSS algorithms (see, e.g.
Bell & Sejnowki, 1995; Cardoso, 1989; Comon, 1994;

We consider the information processing of a signal which Nadal & Parga, 1997). As a result one obtains an estimate
is an N-dimensional linear mixture ofN independent  of the inverse of the mixture matrix, which in our notations

sources. At each timé one observesS(t) = {§(1), j = can be written as
1,...,N}, which can be written in term of the unknown 1
sources(t) = {s,(t), a=1,...,N} as: — M. )
MNa
N
§ = Z M4 Sas i=1,...N, @ This shows that it will be dominated by the smallest, and
a=1 numerical instabilities or overflows may occur if some of

them are very small. In many approaches to BSS whitening
d of the data is first performed. The whitened data are then an
orthogonal mixture of sources, so that after this preproces-
sing one has sources of equal strengths. But this preproces-
sing requires a multiplication by the inverse of the
eigenvalues, and this is subject to the same numerical
problems as with the computation of the inverse of the
d mixture matrix: as we will see in Section 4, small values
of 5 lead to the existence of small eigenvalues.

whereM = {M;,, j = 1,..,N, @ =1, ..., N} is the mixture
matrix assumed to be invertible. As it is well known, an
easily seen from the above equation, it is not possible to
distinguish between the mixture sfvith the matrixM from
the mixture ofs’ = PDs with the matrixM’ = MD ~1p~?
whereD is an arbitrary diagonal matrix with non-zero diag-
onal elements, and an arbitrary permutation dfl indices.

If we decide to consider both normalized sources an
normalized mixture matrices, we are left with a diagonal
matrix D, which defines the “strengths” of the sources.

. . 3.1. Information content of the data
More precisely we write

N Let us now compute the amount of information conveyed
S= Z Mo M Sao i=1..,N 2 by the dataS, about the sources, that is the mutual infor-
a=1 mation (Blahut, 1988)(S,s). To do so we consider

assuming zero mean and unit variance for every source: N
= M 1,5, + v, i=1..N. (8)
(s0=0, (=1  a=1..N, ©) 3 a; jaTl >
where( ) denotes the average with respect to the (unknown) wherev = {, j = 1,...,N} is a vanishing additive noise,
sources probability distributions, (») =0, (yyu) = b with b — 0. Thenl(S,s) is a constant
_ 4 (that is a quantity that depends dnalone) plus the data
p(S) = l:[pa(sa)’ @ entropy. Since the mixture matrix is invertible, we have

with M the normalized mixture matrix. The normalization !(S.9) = Const + In[deM| + Z'” Na
can be chosen in different ways, and the two of them are of “

particular interest for what follows. The simplest one is, for

eacha - Z thapa(ha)ln pa(ha)- 9

MM, = i(m_ 2=1 (5) The last term in the above expression is the sum of the
g source entropies. One should remember thasthare the

. o . normalized sourcess?) = 1. This shows that each source
The second one is a normalization on the inverse of the ¢ontributes to the information by a combination of its

mixture matrix: strength and its entropy: the strength term favors strong
N sources, whereas the entropy term favors the sources with

MM Y =Y (M 1)? =1 (6) a probability distribution function (p.d.f.) close to Gaussian.
=1 The entropy terms, however, are bounded: the entropy of a

source cannot exceeds the one of a Gaussian with same

Once a particular normalization, such as Egs. (5) or (6), is variance. that is

chosen, the parameterg, in Eq. (2) are well defined and

i . 1
can be understood as the relative strengths of the sources. thapa(ha)ln pu(hy) = §|n ome. 10)
3. Information processing in the presence of Hence the information can be easily dominated by the
inhomogeneous sources strength terms, which can be arbitrarily large.

Itis known that for performing BSS perfect knowledge of
Since the mixture matrix is assumed to be invertible, it is the sources distribution is not necessary and that working on
in principle possible to compute an estimate of it. This can the cumulants of order 2 and 3 or 4 is sufficient (see, e.g.
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Comon, 1994; Nadal & Parga, 1997). We can thus analyze (p) = 0, () = 0, (1)) = b°8;, (wwy) = bg.The J;

the result, Eq. (9), by making a close-to-Gaussian approx-

can be viewed as synaptic efficacies and lieeas post-

imation (Comon, 1994; Nadal & Parga, 1997). If we assume synaptic potentials (PSP). As explained in the previous

the sources to have non-zero third-order cumulants,

AQ = (e (11)
we replace the source distributipn by

<2 -3
b o(Se) = 1+ 29%& =9 12
pa(sa) \/ﬂ ( o 6 ( )

The distributiong,, has the same three first moments as the
true distributionp, (Abramowitz & Stegun, 1972).

In the case of a symmetric non-Gaussian distribution, the
third-order cumulants are zero and one has then to take into

account non-zero fourth-order cumulants. It is a straightfor-

ward exercise to perform the same analysis as below in that

case. For simplicity in this paper we will consider only the
case of non-symmetric distributions.

Within this approximation, Eq. (12), the mutual infor-
mation (9) reads:

- N
I(S,5) = Const + In|deM| + > In n, + Eln 2me

_ 1 2
- g<si>c. (13

From the above expression, the most important sources are

those for which the quantity

(e —Inm, (14

is the smallest.
We consider now the information that will be conveyed

by a network processing the data, and ask for the contribu-

tion to this information by each source when the network
performs BSS.

3.2. Characterization from infomax

The infomax criterion (Linsker, 1988; Nadal & Parga,
1994) will allow us to get some more insight into the link

between the sources strengths and the amount of infor-

mation that can be extracted from the data.
We consider the information processing of the signal by a

non-linear network, and we are interested in computing the

mutual informationl(V,S) between the inpuSS and the
output V ={V,, i =1,..,N} of the network. Since the

signal is a linear mixture, the relevant architecture is a linear W=JM=1+

processing followed by a (possibly) nonlinear transfer func-
tion that may differ from neuron to neuron:

Vi = fithy) + v

hi = Z\]ij (§ + ).
i

15

(16)

where vy ={1’,j=1,...N} and v={u, i=1,..,N}
are additive input and output noises, respectively, with

section, the noise has to be introduced in order to have a
non-trivial mutual information, and we take the limit0

b® < b < 1. For strictly zero input noiseb® = 0, in the

limit b— 0 the mutual information is up to a constant
equal to the output entropy. As shown in Nadal and Parga,
(1994) its maximization over the choice of bathand the
transfer functiond;'s leads to BSS. One can then derive
practical algorithms for performing BSS (Bell & Sejnhowski,
1995). In this limit ofb® = 0 all the sources play the same
role, that is the maximum of the mutual information is inde-
pendent of the individual sources properties as well as of the
mixture matrix. When one takes into account a non-zero
input noise, then at first non-trivial order bf/b one sees
that the input noise introduces a scale that breaks this invar-
iance. More precisely, at first-orderif¥b the mutual infor-
mation|(V,S) can be written (see Nadal and Parga (1994)
for details):

_ bO N 2
V.9 =1oV.9 = 5 > | anwar2 @
wherely(V,9) is the value ab® = 0,
o(V,S) = Const — thap(h)lanp(¢ (18

[Tfitn
i=1
and(b%b)I’; is the variance of the noise on the P&P

Iy = [397;. (19

Finally, ¢x(h) is the probability distribution oh induced
by the sources input distribution, an(h;) the marginal
distribution of the PSH. At a givenJ, optimizing with
respect to the choice of transfer functions gives
/ bo 2 2
fith) = ¢i(h)q1 + FF” K" — ¢ (h)] (20
with (y?) = [ dhygsi(h)y(h) = [ dhig(h)®. We  now
optimize overJ. At zeroth-order the optimum is reached
forJ=M"! (up to an arbitrary permutation), so that we
write

b° 1

—W
b 9
wherely is theN X N identity matrix. Expanding the mutual
information at first-order irb%b one finds that there is no
contribution fromwW ® to this order. Hence the mutual infor-
mation at first-order ih%bis given by Eq. (17)al = M "2,
with f{ given by Eq. (20) in which we seft; = p;. This gives

21

0 N

b
(V.9 = Const = 3¢ >' I J dsu[pa(ST? 22)
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with similar shapes, Eq. (26) suggests to use the strength as
_ _ defined in Eq. (27) to order the sources and select the
_ T-1
Faa =IM"M " oo (23 most relevant ones.
One sees that the term depending\wiis what appears in To conclude this section, we see that the intuitive idea
normalization (6) of the mixture matrix. Hence if one that weak sources can be considered as noise terms and
chooses this particular normalization (6) in order to define cannot be estimated, can be quantified from various point

the strengthsy,, of the sources, one can rewrite of views. From the purely numerical aspect, the mixture
0 N matrix is close to being singular; the information content
b : )

I(V,S) = Const — Z 2< 2) (24) of the data, the amount of information conveyed by a
2b

processing channel, are seriously diminished by the
presence of weak sources. From this analysis, it appears
clearly that it would be preferable to be able to project the
data onto the space spanned by the strong sources, in order
to work in a space of smaller dimension with sources of
similar strengths. In the next section we show that this is
simply done by making use of the principal component
analysis.

with (p2) = jdsa[pa(sa)] . The above expression shows
how each source contributes to the mutual information in
term of its strengthy, and its p.d.fo,.

Within the close-to-Gaussian approximation (12) one
gets

bO N ) 1
1(V,S) = Const — 5 D <S§‘>°?' (25)
a=1 ]

Hence the sources that contribute the most to the conveyed?. Principal component analysis

information are those for which the quantity ) ) S
A standard approach in data processing consists in first

= <s3> (26) performing the principal component analysis (PCA), and
then projecting the data onto the eigenspace associated
is the smallest. One should remember that, hegés given with the largest eigenvalues. In the present context of
by BSS, it is reasonable to expect the space spanned by the
\ strong sources to be essentially the same as the one asso-
L Z -1 27 ciated to the largest principal components. It is the purpose
2 a, . . : ; o .
e = of this section to give a positive and more precise answer to
this question.
We consider the specific case whersources are strong,
while N — msources are weak. More precisely, choosing for

As already seen when computing the mutual information !ater convenience normalization (5), we assume

between the data and the sources, a source will contribute |f ~0(l=
=€) fora=1,.

it is strong and/or close to Gaussian. However, the partlcular (28)
combination that appears here is different from the one we ,, — o(¢) fora =m+ 1,.., N,
obtained in the previous section: here we have a multipli-
cative combination of strength and cumulant, whereas in Eq. wheree is a small parameteg < 1. This is equivalent to
(14) it was an additive combination. state that there is a gap in the spectrum of eigenvalues at the

An important practical remark is that, if the third-order A, with Ay, 1 << Ay,
cumulants are zero, the close-to-Gaussian approximation We assume that the reducétx m mixture matrix M°,
has to take into account the fourth-order cumulants. Then,{Mﬁl =M. j=1,...N; a=1,...m} is of rank m, so
instead of Eqgs. (14) and (26) one gets similar expressionsthat the(N X N) correlation matrix (the covariance of the
with the fourth-order cumulants in place of the third-order input signal)C° which would be obtained a = 0, hasm
ones. non-zero eigenvalues. It is a standard exercise in pertur-

The criterion (26) can be used in different ways, depend- bation theory (Messiah, 1961) to study the behavior of the
ing on the particular application considered. The quantity eigenvalues and eigenvectors of a symmetric matrix, here
&, is zero for Gaussian sources, whatever their strengths.the covariance matrixC of the inputs, at first non-trivial
This is not surprising since the Shannon information is order in the small parameter. The eigenvalues have a
maximal for Gaussian distributions. However, in many smooth behavior withe: the m largest eigenvalues of
cases the Gaussian part of the signal is considered asare, at first non-trivial order, then non-zero eigenvalues
“noise”, and the non-Gaussian part is the “meaningful” of C° shifted by quantities of ordee?, and theN — m
part, the “true” signal. Hence mutual information can be smallest ones are of ordef. However, the eigenvectors
used as a cost function in order to extract this noise, in are very sensitive to small variations efthis is related
particular when it is strong, which can then be subtracted to the fact that the mixture matriM is closed to be singular
from the input signal. In cases where one has distributions of for small e. More precisely, one gets the following results.

3.3. Discussion
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One can writeC as sional signal which is the mixture of tha strong sources,
weakly corrupted by an additive noise.

c=c+éch 29 Y comipiec by
where C° is the correlation of the inputs that would be
obtained without the weak sources = 0), and €°C!
contains all the contributions from the weak sources. We

0 : 0 it 120

denote by, th% eigenvalues &, with{A,, a=1,...m} projecting it onto them largest principal components. To
non-zero a”d)‘g =0fora=m+1,..,N. The associated  5ygjq the introduction of a new notation, in the following
eigenvectorsy,, « = 1, ...,N} form an orthonormal basis. S.j=1...m will denote these preprocessed data

. 0 - . .
If all the eigenvalues o€ are different (hence in particular  giections) instead of the data themselves. Instead of the
N = m+ 1), then, at first order, the eigenvalues@fre model Eq. (1) we have thus to consider the model

5. BSS with noisy data

Let us now assume that we have preprocessed the data by

Ao =AY+ €N m
§=> M, +1. j=1..m (34)
A =VTch®  (a=1,...N), (30)
The matrixM is now amXx m invertible mixture matrix,
such thatMM T hasm non-zero, of order % €, eigen-

0 o ngclv% values. Thes,’s (o« =1, ...,m) are the sources of interest,
Va=Vo+ €Y VB0 — )0 (@=1..N). 3D and they’s are additive noises, resulting from the weak

pra B sources, as explained in the previous section. This noise

If there are degenerate eigenvalues (in particular the null %o = {3{. j = 1,...m} is uncorrelated with then (strong)
eigenvalue is degenerate f§r> m + 1), this is modified as ~ sources, and of arbitrary distributid(1,). Since we are
follows. Suppos@o has onlyr < N different eigenvalues, ~ working in the smalle regime, all we will need is to char-

and the corresponding eigenvectors are

w1 > mp > >y, With degeneraciesg,, a=1,...r acterize this distribution by its first two cumulants:
Qata=N, ,ur—OlfN>m+1) We have (o) =

a—1
Ay =y for Z G < a= Z U = @4 (32 () = B, (35)

where B is a (possibly non-diagonalinx m symmetric
matrix. The problem we are considering now is thus strictly
the same as the one of performing BSS on a linear mixture
of msources corrupted by some additive input noise, which,
although small, cannot be neglected.

and we sety; = 0. Consider an eigenvalye, with degen-

eracy g, > 1. The eigenvectors of° associated tqu,,

{V°, a,_; < @ = &}, form an orthonormal basis of this

eigenspace of dimensiap, and this base is defined up to

an arbitrary orthogonal transformation. This arbitrariness is

removed at first non-trivial order ie, together with the 5 1. The mutual information

removal of the eigenvalue degeneracy: the rigveigen-

values for {o, 1 < a = «a,} are given by Eq. (30), where In this section we consider this noisy BSS problem within

the v% form the particulan, x g, orthogonal matrix that  the infomax approach as formulated in Nadal and Parga

diagonalizesC}, the restriction of the matrixC! to the (1994). The network we consider has the same architecture

eigenspace ofi,, AL being then the eigenvalue 6£. as the one defined in Eq. (16), but withinputs and outputs:
The eigenvectors are now given by an equation similar ,, _ f.(h) + v (36)

to Eq. (31), with the sum ove8 # « replaced by a sum over

the 8 such thatAg # A,, and a new term specific to each

m
degenerate eigenvalyg: h = ZJij (§+ VJ-O) i=1..m (37)
OTC1 =1
Vo = Vot € Z vt A0 — Te Z XapVp with (1) = bs;;,. The limit to be considered here is the
BAg#a BAg=A (33 one of a vanishing output noise,— 0, but at a given input
(a=1,..,N), noise level:

2
. . . < .
where thev® are chosen as just explained, angls is an O<b<e (38)

arbitrary antisymmetric matrix. Another important difference with the calculation done in
The final result is thus that the space generated byrthe Section 3.2, is that here we are interested in computing the

eigenvectors associated to thelargest eigenvalues is, to information conveyed about the global inp&;+ »,, and

ordere?, the same space as the one that would be obtained innot about the “pure” signal alon&, Indeed, in Section 3.2

the absence of the weak sources. Projecting the data ontave considered some input noise corresponding to some

this space is then equivalent to working with timedimen- noise at the level of the receptors, whereas here the actual
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signal is the global inpu§ + v, in whichwehave decided  written as

to call “(pure) signal” the part coming from the strong

sources and “noise” the part due to the weak sources. P(h) = [l—[ po (ML + €Q[h] + R[h]] (44)
In this limit of vanishing output noise, the mutual infor- o

mationl (V, S + vy) between the output and the input of the

network is up to a constant equal to the output entropy. To with

simplify the analysis, we assume a full adaptation of the Qh] = — Z[ln pa]/wiﬁhﬁ — Trwl (45)
transfer functions, which means (Nadal & Parga, 1994), P

for J given,

and R[h] contains terms of order at least, coming from
fith) = (), i=1..,m, (39 both W, Eq. (43), andB, Eqg. (42). Similarly, for the

. . . o marginal distributions:
wheres;(h;) is the marginal probability distribution of the

PSPh. As a result the mutual information is up to a constant ¥a(hs) = pa(h {1 + €Q,[h,] + Ry [N, 1}, (46)

equal to the redundancy between the PSPs (Nadal & PargaWith

1994):

ll/(h) Qa[ha] = _[ln pa]lwéaha - Wgz—a' (47)

I(V,9) = — | d"hy(h)In ——"—. 4 - : :

(V.S = Const Jd Yiin h (40 The substitution of Egs. (44) and (46) in expression (40)
lj! $i(hi) gives then for the mutual information, at first non-trivial
= order:

2 m
€
5.2. Maximization in the smad limit V.9 =1o(V.5) = J l_[ldhapa(ha>
In term of the sources distributions, the distributiggn) 2
is given by: X [Q[h] -y Qa[ha]] : 48
m a
h) = J [ 19sapa(se) The termly(V,S) corresponds to the part of the mutual
a=1 information that does not take into account the weak
m sources. It is the same as if one computes the mutual infor-
X J'diOP(VO)l_[ 8| h — Z [IM;, S, — Z‘Jij ) mation between the outpM and the signaMs; I(V,Ms).
i=1 a j The fact that there is no term of ordelin Eq. (48) can be

(41 understood as coming from the normalization conditions
[ dhy°h) = 1 and [ dh, 4 = 1, which imply
Since in Eq. (41) the noise§ are ~ O(e) we can perform

an expansion, leading to the following expression: ﬁ dh,p,(h,)Q[h] = O
a=1
2
w(h) = {1 D) [JBJT]nfaiai/}wO(h), 42 and
ii’

o [an.phoumng = o
whered; means the partial derivative with respecttpand

0 . .
¢"(h) is the p.d.1. that would be obtainedet= 0. Because (these properties can be easily checked by performing the

tzg noise has zero mean there is no term of oeder Eq. integrations using the explicit expressions (45) and (47)).
( Vzl id h S f th Linf One has similar properties for the quantities of ore&r
e consider now the maximization of the mutual infor- R[h] and R,[h, ] defined in Eqs. (44) and (46), so that they

mation over the 9h0|ce af, taking into account tha 'S do not contribute at this ordef in the final result (48).
small. If e was strictly zero, we would be back to the noise-

Now one has
less BSS problem for which the optimum is reached)fer W
M ! (up to an arbitrary permutation). So for non-zerwe Q[h] — Z Q.h,] = — Z [In Pa]'WiBhB- (49
write a a=p
W=JIM =1, + W' + O, (43) The mutual information is maximized when the quadratic

term in Eq. (48) is minimized, that is fcwiﬁ =0fora#
wherel,, is themx midentity matrix, and the correctionisa . It follows that there is no correction to the mutual infor-
matrix of order at least. SinceW depends now oa we can mation at ordere’ and that corrections due to the weak
also expandy® in powers ofe, and finallyyi(h) can then be  sources appear at ordet.
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of the sources. In particular, when non-zero input noise is
taken into account the contribution of a source to the
conveyed information can be characterized by a criterion
that combines the mixture matrix elements and the third
cumulant of the source distribution. This allows to define
the strength of a source once a proper normalization of the
mixture matrix is assumed. Conversely, this study shows
which sources will be “preferred” by the infomax criterion
(which part of the signal is more likely to be well extracted
by an ICA performed with infomax).

The analysis indicates also that, although arbitrary, the
assumed normalization of the mixture matrix may have an
important practical role in the analysis of the outcome of an
ICA, whenever one wants to extract the “meaningful”
sources. Which part of the signal is more important is of
course an application-dependent notion. Prior knowledge
related to a given case should allow to define the proper
normalization from which the appropriate scale of source
strengths can be defined. Conversely each chosen normal-
ization implies a particular physical interpretation that
should be kept in mind when analyzing the outcome of an

Bas ft 0001 Bas ft 0002 Bas ft 0003 Bas ft 0004 Bas ft 0005

Bas ft 0006 Bas ft 0007 Bas ft 0008 Bas ft 0009 Bas ft 0010

Bas ft 0011 Bas ft 0012 Bas ft 0013 Bas ft 0014 Bas ft 0015

Bas ft 0016 Bas ft 0017 Bas ft 0018 Bas ft 0019 Bas ft 0020 ICA.
We have considered, in more detail, the particular case of
Fig. 1. Basis functions of the ICA solution. the information processing of a linear mixture of indepen-
dent sources when some of them are very weak as compared
6. Numerical simulations to the other sources. One should note that in such case the

notion of strong versus weak is independent of the mixture

In this section we illustrate our analysis by numerical matrix normalization. It is easily seen that the presence of
simulations. We test the above analysis on the following weak sources leads to an almost singular mixture matrix,
toy example. We consider the ICA of natural images and this manifests itself by the existence of very small
performed in Bell & Sejnowski (1995). First we reproduce eigenvalues in the PCA analysis. We have shown that it is
the results in Bell and Sejnowski (1995) (not shown here). relevant to project the input data onto the largest principal
We then create a new database with artificially increased components in order to extract the strongest independent
component strengths: new images are computed as a lineasources. We have thus quantified the intuitive idea that the
mixture of the previous ICA basis function but the strength subspace, where most of the data live, is mainly spanned by
of 20 components was augmented 100 times compared tothe strongest independent sources. We illustrated this result
the other 124. We performed ICA in this new data base, with on the ICA of the image data base studied in Bell &
the same algorithm based on infomax (Bell & Sejnowski, Sejnowski (1995).
1995; Nadal & Parga, 1994), but after projecting the data A possible situation where the PCA will not be (suffi-
onto the 20 largest principal components. The resulting ciently) helpful is when the strong sources generate a linear
basis function represented in Fig. 1 shows the efficiency space of dimension smaller than the number of sources. This
of PCA preprocessing: we find the good 20 stronger compo- space will be found by the PCA. After projection onto the
nents and the computational time is considerably decreasedlargest PCs, one has then to deal with an ICA with a number

For such a signal, the PCA analysis is identical to a Four- of sources larger than the number of captors. This is an
ier analysis, and therefore dropping the smallest eigenvaluesinteresting problem that has received considerable attention
means neglecting high frequencies. One thus expects torecently, and several algorithms have been proposed. Our
extract components that are smoothed versions of compo-analysis suggests then that it can be meaningfull to project
nents extracted when working with the full space. This is onto the largest PCs (in order to eliminate the weak sources)
indeed the case as shown in Fig. 1. and yet to search for a number of (strong) ICs larger than the

number of largest PCs.

7. Concluding remarks
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